Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 83(24): 4130-4141, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37934115

RESUMO

Although KRASG12C inhibitors show clinical activity in patients with KRAS G12C mutated non-small cell lung cancer (NSCLC) and other solid tumor malignancies, response is limited by multiple mechanisms of resistance. The KRASG12C inhibitor JDQ443 shows enhanced preclinical antitumor activity combined with the SHP2 inhibitor TNO155, and the combination is currently under clinical evaluation. To identify rational combination strategies that could help overcome or prevent some types of resistance, we evaluated the duration of tumor responses to JDQ443 ± TNO155, alone or combined with the PI3Kα inhibitor alpelisib and/or the cyclin-dependent kinase 4/6 inhibitor ribociclib, in xenograft models derived from a KRASG12C-mutant NSCLC line and investigated the genetic mechanisms associated with loss of response to combined KRASG12C/SHP2 inhibition. Tumor regression by single-agent JDQ443 at clinically relevant doses lasted on average 2 weeks and was increasingly extended by the double, triple, or quadruple combinations. Growth resumption was accompanied by progressively increased KRAS G12C amplification. Functional genome-wide CRISPR screening in KRASG12C-dependent NSCLC lines with distinct mutational profiles to identify adaptive mechanisms of resistance revealed sensitizing and rescuing genetic interactions with KRASG12C/SHP2 coinhibition; FGFR1 loss was the strongest sensitizer, and PTEN loss the strongest rescuer. Consistently, the antiproliferative activity of KRASG12C/SHP2 inhibition was strongly enhanced by PI3K inhibitors. Overall, KRAS G12C amplification and alterations of the MAPK/PI3K pathway were predominant mechanisms of resistance to combined KRASG12C/SHP2 inhibitors in preclinical settings. The biological nodes identified by CRISPR screening might provide additional starting points for effective combination treatments. SIGNIFICANCE: Identification of resistance mechanisms to KRASG12C/SHP2 coinhibition highlights the need for additional combination therapies for lung cancer beyond on-pathway combinations and offers the basis for development of more effective combination approaches. See related commentary by Johnson and Haigis, p. 4005.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fosfatidilinositol 3-Quinases/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas Proto-Oncogênicas p21(ras)/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Detecção Precoce de Câncer , Inibidores Enzimáticos/uso terapêutico , Mutação , Linhagem Celular Tumoral
2.
J Med Chem ; 65(24): 16173-16203, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36399068

RESUMO

Rapid emergence of tumor resistance via RAS pathway reactivation has been reported from clinical studies of covalent KRASG12C inhibitors. Thus, inhibitors with broad potential for combination treatment and distinct binding modes to overcome resistance mutations may prove beneficial. JDQ443 is an investigational covalent KRASG12C inhibitor derived from structure-based drug design followed by extensive optimization of two dissimilar prototypes. JDQ443 is a stable atropisomer containing a unique 5-methylpyrazole core and a spiro-azetidine linker designed to position the electrophilic acrylamide for optimal engagement with KRASG12C C12. A substituted indazole at pyrazole position 3 results in novel interactions with the binding pocket that do not involve residue H95. JDQ443 showed PK/PD activity in vivo and dose-dependent antitumor activity in mouse xenograft models. JDQ443 is now in clinical development, with encouraging early phase data reported from an ongoing Phase Ib/II clinical trial (NCT04699188).


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Desenho de Fármacos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Pirazóis/farmacologia , Pirazóis/uso terapêutico
3.
Mol Cancer Ther ; 18(7): 1323-1334, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31068384

RESUMO

FGFR1 was recently shown to be activated as part of a compensatory response to prolonged treatment with the MEK inhibitor trametinib in several KRAS-mutant lung and pancreatic cancer cell lines. We hypothesize that other receptor tyrosine kinases (RTK) are also feedback-activated in this context. Herein, we profile a large panel of KRAS-mutant cancer cell lines for the contribution of RTKs to the feedback activation of phospho-MEK following MEK inhibition, using an SHP2 inhibitor (SHP099) that blocks RAS activation mediated by multiple RTKs. We find that RTK-driven feedback activation widely exists in KRAS-mutant cancer cells, to a less extent in those harboring the G13D variant, and involves several RTKs, including EGFR, FGFR, and MET. We further demonstrate that this pathway feedback activation is mediated through mutant KRAS, at least for the G12C, G12D, and G12V variants, and wild-type KRAS can also contribute significantly to the feedback activation. Finally, SHP099 and MEK inhibitors exhibit combination benefits inhibiting KRAS-mutant cancer cell proliferation in vitro and in vivo These findings provide a rationale for exploration of combining SHP2 and MAPK pathway inhibitors for treating KRAS-mutant cancers in the clinic.


Assuntos
Acrilonitrila/análogos & derivados , Compostos de Anilina/uso terapêutico , Neoplasias/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Acrilonitrila/farmacologia , Acrilonitrila/uso terapêutico , Compostos de Anilina/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Res ; 76(2): 390-402, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26577700

RESUMO

The introduction of MAPK pathway inhibitors paved the road for significant advancements in the treatment of BRAF-mutant (BRAF(MUT)) melanoma. However, even BRAF/MEK inhibitor combination therapy has failed to offer a curative treatment option, most likely because these pathways constitute a codependent signaling network. Concomitant PTEN loss of function (PTEN(LOF)) occurs in approximately 40% of BRAF(MUT) melanomas. In this study, we sought to identify the nodes of the PTEN/PI3K pathway that would be amenable to combined therapy with MAPK pathway inhibitors for the treatment of PTEN(LOF)/BRAF(MUT) melanoma. Large-scale compound sensitivity profiling revealed that PTEN(LOF) melanoma cell lines were sensitive to PI3Kß inhibitors, albeit only partially. An unbiased shRNA screen (7,500 genes and 20 shRNAs/genes) across 11 cell lines in the presence of a PI3Kß inhibitor identified an adaptive response involving the IGF1R-PI3Kα axis. Combined inhibition of the MAPK pathway, PI3Kß, and PI3Kα or insulin-like growth factor receptor 1 (IGF1R) synergistically sustained pathway blockade, induced apoptosis, and inhibited tumor growth in PTEN(LOF)/BRAF(MUT) melanoma models. Notably, combined treatment with the IGF1R inhibitor, but not the PI3Kα inhibitor, failed to elevate glucose or insulin signaling. Taken together, our findings provide a strong rationale for testing combinations of panPI3K, PI3Kß + IGF1R, and MAPK pathway inhibitors in PTEN(LOF)/BRAF(MUT) melanoma patients to achieve maximal response.


Assuntos
Sistema de Sinalização das MAP Quinases/genética , Melanoma/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Receptor IGF Tipo 1/metabolismo , Apoptose , Morte Celular , Proliferação de Células , Humanos , Melanoma/patologia , Proteômica
5.
Mol Cancer Ther ; 11(8): 1747-57, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22653967

RESUMO

The pan-phosphoinositide 3-kinase (PI3K) inhibitor BKM120 was found, at high concentrations, to cause cell death in various cellular systems, irrespective of their level of PI3K addiction. Transcriptional and biochemical profiling studies were used to identify the origin of these unexpected and apparently PI3K-independent effects. At 5- to 10-fold, the concentration needed to half-maximally inhibit PI3K signaling. BKM120 treatment caused changes in expression of mitotic genes and the induction of a robust G(2)-M arrest. Tubulin polymerization assays and nuclear magnetic resonance-binding studies revealed that BKM120 inhibited microtubule dynamics upon direct binding to tubulin. To assess the contribution of this off-target activity vis-à-vis the antitumor activity of BKM120 in PI3K-dependent tumors, we used a mechanistic PI3K-α-dependent model. We observed that, in vivo, daily treatment of mice with doses of BKM120 up to 40 mg/kg led to tumor regressions with no increase in the mitotic index. Thus, strong antitumor activity can be achieved in PI3K-dependent models at exposures that are below those necessary to engage the off-target activity. In comparison, the clinical data indicate that it is unlikely that BKM120 will achieve exposures sufficient to significantly engage the off-target activity at tolerated doses and schedules. However, in preclinical settings, the consequences of the off-target activity start to manifest themselves at concentrations above 1 µmol/L in vitro and doses above 50 mg/kg in efficacy studies using subcutaneous tumor-bearing mice. Hence, careful concentration and dose range selection is required to ensure that any observation can be correctly attributed to BKM120 inhibition of PI3K.


Assuntos
Aminopiridinas/farmacologia , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Indazóis/farmacologia , Camundongos , Mitose/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Ratos , Sulfonamidas/farmacologia , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...